

Bob Alexander

7/30/2020

GALACTIC STUDIOS BASIC

1.25

User Manual

Contents
1 Introduction ... 1

1.1 Acknowledgements.. 1

2 Program Elements .. 2

2.1 Comments ... 2

2.2 Statements ... 2

2.3 Data Types .. 2

2.4 Literals ... 2

2.5 Variables .. 2

2.6 Predefined Constants .. 3

2.7 Arrays .. 3

2.7.1 Array Initializers ... 5

2.8 Structs .. 6

2.9 Objects and Handles ... 7

2.10 Expressions ... 7

2.10.1 Integer Arithmetic ... 8

2.10.2 Operand Type Promotion Rules .. 8

2.11 String Manipulation .. 9

2.12 Vector and Matrix Arithmetic ... 9

2.13 Control Structures .. 10

2.14 Labels .. 11

2.15 DATA and READ Statements .. 11

2.16 Functions and Subroutines .. 11

2.17 Include Files ... 13

2.18 Variable Scope .. 13

2.19 Case Sensitivity ... 14

2.20 Error Handling .. 14

3 Using GSBASIC ... 15

3.1 Immediate Mode .. 15

3.2 Running Programs ... 15

3.3 Debugging ... 16

3.4 Breakpoints .. 17

3.5 Tracing ... 17

3.6 Autorun.bas ... 17

4 Statements ... 17

4.1 BP (Breakpoint) ... 17

4.2 CALL .. 18

4.3 CHAIN .. 18

4.4 CONTINUE {FOR | REPEAT | WHILE} ... 18

4.5 DIM .. 19

4.6 DIR ... 20

4.7 EXIT {FOR | REPEAT | WHILE} .. 20

4.8 FOR...NEXT ... 21

4.9 FUNCTION...ENDFUNCTION ... 22

4.10 IF...[THEN]...[ELSEIF...[THEN]...][ELSE...]ENDIF .. 23

4.11 INCLUDE ... 23

4.12 LET .. 23

4.13 LOAD ... 24

4.14 MEM... 24

4.15 ON ERROR CALL ... 24

4.16 OPTION BASE .. 25

4.17 PRINT .. 25

4.18 RELOAD .. 25

4.19 REPEAT...UNTIL ... 26

4.20 RETURN .. 26

4.21 RUN ... 27

4.22 STEP ... 27

4.23 STOP ... 27

4.24 STRUCT .. 28

4.25 SUB...ENDSUB ... 28

4.26 TRON and TROFF ... 29

4.27 WHILE...[DO]...ENDWHILE ... 29

5 Built-In Constants ... 29

5.1 False .. 30

5.2 Nil ... 30

5.3 Pi .. 30

5.4 True.. 30

6 Built-In Functions .. 30

6.1 Abs ... 31

6.2 Acos ... 31

6.3 AppendArrays .. 31

6.4 Asc ... 32

6.5 Asin .. 32

6.6 Atan.. 32

6.7 Atan2 ... 33

6.8 ByteArray ... 33

6.9 Chr ... 33

6.10 ClearLastError ... 34

6.11 CopyArray .. 34

6.12 Cos... 34

6.13 Cross ... 35

6.14 DeepCopy .. 35

6.15 Dir .. 36

6.16 Float ... 36

6.17 GetLastError .. 36

6.18 Instr .. 37

6.19 Int ... 37

6.20 LBound .. 38

6.21 Left ... 38

6.22 Len ... 39

6.23 Max .. 39

6.24 Mid ... 39

6.25 Min ... 39

6.26 Norm .. 40

6.27 Rand .. 40

6.28 Randomize ... 40

6.29 Pow .. 41

6.30 Right .. 41

6.31 Round .. 41

6.32 Sin .. 42

6.33 Size .. 42

6.34 Sqrt .. 42

6.35 StrComp ... 42

6.36 Tan ... 43

6.37 ToLower ... 43

6.38 ToUpper ... 43

6.39 Transpose .. 44

6.40 Truncate ... 44

6.41 UBound .. 44

6.42 Val .. 45

 1

1 INTRODUCTION

Galactic Studios BASIC (GSBASIC) is an interactive compiling interpreter for a dialect of BASIC.

While it mostly imitates other BASICs, it includes some features inspired by C. It is intended for

use in embedded systems. It can execute statements entered at a console or it can load BASIC

files and execute them. It has built-in debugging features that allow a running program to be

interrupted. The state of that program can then be examined and modified before resuming

execution.

GSBASIC contains many built-in functions, and they are documented in section 6. However,

when GSBASIC is embedded in a system, that system may provide additional built-in functions.

Refer to the system's documentation for a list of its built-in functions.

This manual assumes that you are familiar with programming in a BASIC-like or C-like language.

Galactic Studios BASIC was written by me, Bob Alexander. http://GalacticStudios.org is a web

site that describes some of my other projects.

The implementation and documentation for GSBASIC are Copyright 2018 by Robert E.

Alexander.

1.1 Acknowledgements
Many thanks to Dave Lindbergh for reviewing this document and providing valuable feedback.

Thanks also to the members of the teams at Digital Equipment Corporation that developed

RSTS/11 and BASIC-Plus.

 2

2 PROGRAM ELEMENTS

2.1 Comments
Comments are preceded by a single quote ('), the REM statement, or the C-like double slash (//)

and extend to the end of the line. Comments may appear after a statement on the same line.

REM This is a comment

' This is another comment

A = 3 ' This comment is on the same line as a statement

A = 4 // And a comment style for you C programmers

2.2 Statements
A GSBASIC program is composed of a series of statements. Each statement is terminated by a

newline (carriage return or line feed). A statement can be continued onto additional lines by

typing an underscore (_) as the last non-space character on the line.

Statement keywords are case-insensitive, so that PRINT, print, Print, and pRiNt are equivalent.

print "Hello, World!" ' Legal statement

PRINT _

"Hello, World" ' Multiline statement using underscore

Rem The following statement is illegal because the FOR statement

Rem must be on a new line

Print "Hello, World" For x = 1 to 3

2.3 Data Types
GSBASIC supports three data types: 32 bit integers, 32 bit floating point numbers, and strings.

The maximum length of strings is 64KB. Strings contain single-byte characters; multi-byte

encodings (e.g. UTF-8) are not supported.

2.4 Literals
GSBASIC recognizes integers, floating point ("float") numbers, and string literals.

An integer literal may be written in decimal or hexadecimal. Hexadecimal numbers are written as

in C, e.g. 0x3, 0XAF, or 0x0b, or with a preceding dollar sign, e.g. $abcd or $1B. Decimal literals

are written as you would expect.

Floating point numbers are written with an optional exponent. Examples of valid floats are

3.14159, 6.02e23, or 6.626E-34. Floats must start with a digit, so you cannot write .123, you must

write 0.123.

String literals are written with double quotes, e.g. "Hello, world!". If you want to include a double

quote or a control character in the string, use string concatenation with the CHR() function.

2.5 Variables
Variables may store integers, floats, strings, arrays, or handles to objects. They are variants, so

even if a variable is initialized with a value of one type, it can be assigned a value of another type

later. This even allows a variable that holds an integer to be assigned an array, at which point the

 3

variable becomes an array as if it had been in a DIM statement. Conversely, an array defined in a

DIM can be assigned to an integer, float or string, and it will no longer be an array.

DIM a[10]

a = 1 ' 'a' is no longer an array; it's an integer

DIM a[5, 3] ' it's an array again

Variable names must begin with a letter or underscore, and then may contain letters, digits or

underscores. A variable name may be as up to 32 characters long. Variable names are case-

sensitive.

Variables do not need to be declared before use, but they must be assigned a value before they

are used in an expression, i.e. variables do not have a default initialization value.

When a variable holds a string value, array, or handle to an object, the variable is actually holding

a reference to the string, array, or object. If you assign that variable to another variable, it does

not copy the string, array, or object; it only copies the reference.

2.6 Predefined Constants
GSBASIC defines certain identifiers as predefined constants. Examples are PI (defined as

3.14159) and NIL (defined as an uninitialized value). The names of predefined constants are

case-insensitive and are reserved words (i.e. you cannot use those names for your own

variables, subroutines, or functions).

a = PI

PRINT a ' 3.14159 will be printed

a = nil

PRINT a ' This will cause the error "Variable is used before

being assigned a value"

2.7 Arrays
Arrays can be defined with as many as 3 dimensions. Each element of an array is variable, so it

can contain an integer, float, string, struct, or even another array (an array element that holds an

array is not equivalent to adding dimension(s) to the array). Each element in an array is allowed

to hold a different data type.

By default, arrays are one-based, i.e. the first element in an array has an index of 1. The OPTION

BASE statement allows you to change all arrays in your program to be zero-based.

Arrays are created with the DIM statement or with an array initializer. Array elements are

accessed by enclosing a list of indexes in square brackets (note that this is different from other

BASICs, which typically use parentheses). Indexes are integers; if a float is used as an index, it

will be cast to integer (i.e. rounded down).

DIM a[10], b[6, 2]

a[1] = 1

a[10] = 1

PRINT a[1.9] ' The 1.9 will be rounded down to 1

b[3, 1] = 5 ' An example of multi-dimensional arrays

 4

The largest valid index in any dimension of an array can be found using the UBound built-in

function:

DIM a[2, 7, 11]

PRINT UBound(a) ' Prints 2

PRINT UBound(a, 1) ' Also prints 2

PRINT UBound(a, 2) ' Prints 7

PRINT UBound(a, 3) ' Prints 11

Note that UBound returns the largest valid index. If you have left the Option Base at its default

value of 1, the UBound is the same and the number of elements in the dimension of the array.

But if you have used OPTION BASE 0 to make arrays zero-based, the largest valid index is one

less than the size of the array. E.g. if an array has three elements and the Option Base is 1, its

largest valid index is 3. But if Option Base is 0, the array’s largest valid index is 2.

The number of items in any dimension of an array can be found using the Size built-in function.

This example shows the difference between UBound and Size when the Option base is 0:

OPTION BASE 0

DIM a[2, 7, 11]

PRINT UBound(a) ' Prints 1

PRINT UBound(a, 1) ' Also prints 1

PRINT UBound(a, 2) ' Prints 6

PRINT UBound(a, 3) ' Prints 10

PRINT Size(a) ' Prints 2

PRINT Size(a, 1) ' Also prints 2

PRINT Size(a, 2) ' Prints 7

PRINT Size(a, 3) ' Prints 11

A variable that is an array is actually a reference to an array. If you assign it to another variable,

e.g.:

DIM a[3]

a[1] = 1

a[2] = 2

a[3] = 3

b = a

b is now referring to the same values that a is. If you change a value, e.g. a[1] = 5, b[1] will also

equal 5.

When you pass an array to a function or subroutine, it is passed by reference. So if you pass a to

a function and the function changes any of the values of the argument, a's values will be changed

when you return from the function.

SUB S(x)

 x[1] = 2

ENDSUB

DIM a[3]

 5

a[1] = 100

CALL S(a)

PRINT a[1] ' Prints 2dim b

In short, if you're familiar with C, a is really a pointer to an array. Assigning b to a copies the

pointer, not the contents of the array.

If you want to make a copy of an array, use the CopyArray function or the newer DeepCopy

function. (CopyArray does a shallow copy, so that if an element of the array is a struct or another

array, only the reference to that struct or array is copied. DeepCopy does a recursive copy, so

that if an element of the array is a struct or another array, its data is copied.)

There's more you should know about the DIM statement, so read about it in section 4.5.

2.7.1 Array Initializers

Arrays can be initialized much as they are in C, with a list of values enclosed in curly braces.

Elements in an array initializer can be literals, variables, or expressions.

Array initializers can be nested to make multi-dimensional arrays. The magnitudes of the

dimensions are determined by the largest magnitude of any nested array initializer. Unspecified

elements in the initializer are set to integer 0. If this is confusing, look at the following example.

c = {0, 1, 2} ' c is now an array with three initialized elements

' The following statement creates a two dimensional array with

' a size of [3, 2]. Notice that no DIM statement was used.

' After this statement is executed, d[1, 1] equals 3; d[1, 2]

' was unspecified in the initializer, so it is set to integer

' zero; d[2, 1] equals "Hello"; d[2, 2] equals "world"; d[3, 1]

' equals 1.5; and d[3, 2] is integer zero.

d = {{3}, {"Hello", "world"}, {1 + 0.5}}

As mentioned earlier, a single element of an array can hold an array. This can be specified in an

array initializer by adding parentheses around a nested initializer. For example, the code:

a = {{11, 12, 13, 14, 15}, {21, 22, 23}}

creates a 2x4 array that looks like this:

11 12 13 14 15

21 22 23 0 0

Since the array is 2x4, but the second row had only three values in the initializer, the values in the

rest of the second row are zero.

If we add parentheses to the initializer:

a = { ({11, 12, 13, 14, 15}), ({21, 22, 23}) }

we create a one dimensional array with two elements, each of which is an array:

{11, 12, 13, 14, 15}

 6

{21, 22, 23}

In C, an array initializer is a mechanism for initializing arrays and nothing more. In GSBASIC, an

array initializer is actually an expression, which means it can be used within a larger expression.

For example, if there is a subroutine s that takes an array as an argument, you can write:

call s({1, 2, 3})

In short, an array initializer creates an array, and that array can then be assigned to a variable or

used as an argument to a function or subroutine that takes an array as a parameter.

2.8 Structs
GSBASIC supports C-like structs. You define a structure with the Struct statement, giving the

structure a name and specifying its member variables:

Struct ShipPos {x, y, z}

Struct ShipAngle {pitch, roll, yaw}

Struct Ship {name, pos, angle}

You can then create an instance of the struct using its name. Optionally, you can initialize the

members of the new structure:

‘ Creates a Ship structure where all the members are

‘ uninitialized

myShip = Ship()

‘ Creates a Ship structure and initializes its first member.

‘ The remaining members are set to zero

kirksShip = Ship(“Enterprise”)

‘ Creates a Ship structure where all the members are set.

‘ Notice that we’re creating structures for some of the

‘ members

khansShip = Ship(“Botany Bay”, ShipPos(0, 0, 0), ShipAngle())

You can access the members of a structure using the same dot notation that C uses:

khansShip.name = “Reliant”

print khansShip.pos

When you assign a variable that holds a struct to another variable, it is not copied. Instead, both

variables will point to the same data. This means that if you change the data for one variable, it

will change in the other too:

‘ deckersShip and kirksShip now point to the same data

deckersShip = kirksShip ‘ i.e. Star Trek: The Motion Picture

deckerShip.pos = ShipPos(5, 6, 7)

‘ kirksShip.pos is also {5, 6, 7} now

 7

The good news is that this means structures are passed to functions by reference, so it’s fast. But

there are times you’ll want to make a copy of the data. You can do that with the DeepCopy

function:

deckersShip = DeepCopy(kirksShip)

‘ deckersShip is now a separate copy of the data.

‘ Changes made to one will not affect the other

This is the same DeepCopy function that works with arrays, and it does a recursive copy of each

of the struct’s member variables. So if the member variables are arrays or structs, their data will

be copied.

2.9 Objects and Handles
An object is a collection of data. For example, to store the coordinates of a point on a graph, you

need an X value and a Y value. Instead of using two variables (or two items of an array), an

object can combine the two values into one variable which could be called a "coordinate object".

Then, you need a way to read and write the individual components (the X and Y values) of that

object.

An object can take up a large amount of memory, depending on how much information it holds. A

handle is a small amount of data, usually an integer that identifies the object. C programmers

know it as a "pointer".

GSBASIC does not allow you to define objects in your program. But an application that embeds

GSBASIC might use objects internally and make them available to GSBASIC. For example, The

Vectrex32 provides a GSBASIC function called LinesSprite, which takes an array containing

coordinates and returns a handle to an object that represents a drawing on the screen. In your

GSBASIC program, you can then pass that handle to functions that rotate the drawing or hide it

or change its size.

2.10 Expressions
Expressions consist of literals, variables, function calls and operators. Supported operators are

(in priority order):

(,) Left and right parentheses

+, -, NOT, ~,
IsNil

Unary plus, unary minus, logical NOT,
bitwise NOT, test for uninitialized variable

*, /, MOD Multiply, divide, modulo

+, - Add or string concatenate, subtract

<=, <, >=, > Relational operators

=, <>, != Equals, and two ways to express Not Equal

& Bitwise AND for integers

^ Bitwise exclusive OR for integers (Note: in
versions before 1.21, ^ was the
exponentiation operator. Now it’s bitwise
exclusive OR. Use the POW() function for
exponentiation.)

| Bitwise inclusive OR for integers

AND, OR,
XOR

Logical operators. AND and OR use "short
circuit evaluation" (see below).

 8

Operators are case-insensitive, e.g. MOD is the same as mod and IsNil is the same as isnil.

The AND, OR, XOR, and NOT operators return a 0 for false or 1 for true. However, when

evaluating their arguments, they treat any non-zero value as true.

Like C, but unlike many BASICs, the AND and OR operators use "short circuit evaluation". This

means that the right hand side is evaluated only if necessary. If the left hand side of an AND

evaluates to 0, then the AND will return 0 regardless of the value on the right side, so it does not

evaluate the right side. Similarly, if the left side of an OR is non-zero, then the OR will return a 1

regardless of the right side's value, so the right side is not evaluated.

This can be very useful. Consider the following code:

DIM a[3]

i = 4

if i <= 3 AND a[i] = 0 THEN

 ' do something

ENDIF

If i is greater than 3, it is important not to evaluate the right side of the AND because it would

cause an error. Fortunately, with GSBASIC's short circuit evaluation, the right side will not be

evaluated when i is greater than 3.

The IsNil operator returns 1 if its operand is uninitialized:

PRINT IsNil a ' Prints 1

b = 2

PRINT IsNil b ' Prints 0

b = nil

PRINT IsNil b ' Prints 1

IF IsNil b THEN

 b = 3

ENDIF

2.10.1 Integer Arithmetic

Numbers in GSBASIC are either integers or floating point numbers ("floats"). Integer arithmetic is

faster than floating point arithmetic, and only integers can be used as array indexes, but it's

important to understand their peculiar behavior.

The integer 5 is different from the floating point value 5.0. If you divide 5.0 by 2, you get 2.5; if you

divide the integer 5 by 2, you get 2. An integer divided by an integer produces an integer.

Numbers can be converted to floats using the Float function; they can be converted to integers

using the Int function. Dividing Float(5) by 2 would produce 2.5.

2.10.2 Operand Type Promotion Rules

Arithmetic operators (+, -, *, /, MOD) operate on numeric operands. If one of the operands is an

integer and the other is a float, the integer is promoted to a float.

 9

As mentioned before, the integer expression 5 / 2 equals 2. But 5 / 2.0 would produce 2.5,

because the integer 5 would be promoted to a float. Likewise, 5.0 / 2 would equal 2.5.

The logical operators (NOT, AND, OR, and XOR) operate on integers, floats and strings. They

cast their operands to integer ones or zeros (true or false), apply the logical operation, and

produce an integer one or zero. If an operand is an integer or a float, it is cast to a 0 if the integer

or float is zero. If the integer or float is non-zero, it is cast to a one. If an operand is a string, it is

cast to a one if it is non-empty; an empty string is cast to a zero.

The string concatenation operator (+) must have a string as one of its operands. If the other

operand is an integer or float, it is converted to a string and the concatenation is done.

x = 3.14159

print "x equals " + x ' Prints "x equals 3.14159"

2.11 String Manipulation
Strings can be concatenated with the + operator and compared with =, !=, <>, <=, and >=. There

are several functions that operate on them: Asc, Chr, Instr, Left, Len, Mid, Right, StrComp (case-

insensitive compare), ToLower, ToUpper, and Val.

Strings can also be used as byte arrays. For example:

str = “abcde”

PRINT s[1] ‘ Prints 97, the ASCII code for ‘a’

s[1] = 65 ‘ Change the first byte in the array

PRINT str ‘ Prints “Abcde”

‘ Create a string initialized to 100 nul bytes.

data = ByteArray(100)

Strings are stored as a 16 bit length followed by the bytes. They are not nul terminated the way C

strings are, so you can treat them as a byte array and store zeroes in them. However, the PRINT

statement will only print them up to a nul byte.

2.12 Vector and Matrix Arithmetic
Arrays can be treated as mathematical vectors or matrices. BASIC allows you to add, subtract,

and multiply matrices. They can also be divided by a number or negated with a unary minus sign.

The built-in functions Transpose and Norm are also available.

A matrix and a number can be added together:

matrix1 = {{1, 2, 3}, {4, 5, 6}}

matrix1 = a + 10

matrix1 = 10 + a

In the above example, each element of matrix1 has 10 added to it. You can also add two matrices

together. The matrices must be the same size. The corresponding elements of each matrix are

added together:

matrix2 = {{7,8,9}, {10, 11, 12}}

d = matrix1 + matrix2

 10

‘ d now equals {{8, 10, 12}, {14, 16, 18}}

Likewise, a number can be subtracted from a matrix (the number gets subtracted from each

element in the matrix) and one matrix can be subtracted from another (the elements of the

second matrix are subtracted from the corresponding elements in the first).

A matrix can be multiplied by a number:

e = matrix1 * 5

‘ e now equals {{5, 10, 15}, {20, 25, 30}}

And matrices can be multiplied together, which follows the normal rules of dot products. The

number of columns of the first matrix must equal the number of rows of the second matrix:

matrix3 = {{7, 8}, {9, 10}, {11, 12}}

f = matrix1 * matrix3

‘ f now equals {{58, 64}, {139, 154}}

Vectors, or one dimensional arrays, can be multiplied together. Again, it’s done as a dot product

but the result is a scalar:

vector1 = {1, 2, 3}

vector2 = {4, 5, 6}

‘ Dot product will be 32 (1 * 4 + 2 * 5 + 3 * 6)

dotProduct = vector1 * vector2

The Transpose() function swaps the columns and rows of a matrix:

g = Transpose(matrix1)

‘ g is now {{1,4},{2,5},{3,6}}

h = Transpose({1, 2, 3})

‘ h is now {{1}, {2}, {3}}

The Norm() function calculates the Euclidean norm of a matrix or the magnitude of a vector. Like

the Pythagorean theorem, it adds the squares of all the elements in the matrix and returns the

square root:

v = {3, 4}

n = norm(v) ‘ n is set to sqrt(3 * 3 + 4 * 4), or 5

The multiplication operator (*) does a dot product; there is a Cross() function to calculate the

cross product of two 3 dimensional vectors:

‘ cp is set to the cross product of two vectors, in this case

‘ {-3, 6, -3}

cp = Cross({2, 3, 4}, {5, 6, 7})

2.13 Control Structures
GSBASIC offers IF...THEN...ELSEIF...ELSE...ENDIF, FOR...NEXT, WHILE...ENDWHILE, and

REPEAT...UNTIL control structures.

 11

There are two statements for altering the execution of the FOR, WHILE and REPEAT loops:

CONTINUE <loop type> and EXIT <loop type>. The CONTINUE statement jumps to the end of

the loop, so that no more code is executed in the current iteration of the loop, and the next

iteration of the loop begins (assuming the loop's exit condition is not met). It is similar to C's

continue statement.

The EXIT statement terminates the loop. It is similar to C's break statement.

CONTINUE and EXIT specify which loop they apply to. For example, if a FOR loop contains a

WHILE loop, and the WHILE loop contains a CONTINUE FOR statement, then the CONTINUE

applies to the FOR loop, not the WHILE. In this way, CONTINUE and EXIT are more versatile

than C's continue and break.

(If a FOR loop contains another FOR loop, and the inner FOR loop contains a CONTINUE FOR

or an EXIT FOR, the CONTINUE or EXIT apply to the inner FOR loop. There is no way to have

them apply to the outer FOR loop.)

2.14 Labels
GSBASIC does not currently support labels, and therefore does not support GOTO statements.

However, its looping control structures (FOR...NEXT, WHILE...[DO]...ENDWHILE,

REPEAT...UNTIL) support EXIT and CONTINUE to alter their flow.

2.15 DATA and READ Statements
GSBASIC does not support DATA or READ statements. However, you can use Array Initializers

as a source of hard-coded data.

2.16 Functions and Subroutines
GSBASIC provides built-in functions and subroutines, which are described in section 6. You can

also define your own functions and subroutines; see the statements FUNCTION and SUB.

Functions are different from subroutines in that they return a value.

Subroutines are invoked by the CALL statement. Functions can also be invoked by CALL, but are

more typically called by using them in expressions (e.g. c = SQRT(a * a + b * b)), where their

return value can be used.

By default, parameters are passed to functions and subroutines by value. However, variables that

have arrays or structures are actually pointers to the array or structure data. So the pointers are

passed by value, but if you modify the contents of the array or struct, those changes will be visible

when you return from the subroutine or function.

The variable itself, however, can’t be changed unless you pass it by reference. The ByRef

keyword specifies that a parameter is to be passed by reference. A couple of examples will help

clarify all this:

myInt = 5

myInt = 5

myArray1 = {4, 5, 6}

myArray2 = myArray1

 12

struct Struct {a, b, c}

myStruct1 = Struct(1, 2, 3)

myStruct2 = myStruct1

call AlterValue(myInt, myArray1, myStruct1)

sub AlterValue(scalarArg, arrayArg, structArg)

 scalarArg = scalarArg + 1

 arrayArg[1] = arrayArg[1] + 1

 arrayArg = arrayArg * 2

 structArg.c = structArg.c + 1

 structArg = "Replaced by string"

endsub

In the above example, myArray1 and myArray2 are pointing to the same array data, and

myStruct1 and myStruct2 are both pointing to the same structure data. After the call to

AlterValue, myInt will still equal 5, since it was passed by value. myArray1 and myArray2 will still

point to the same array data (despite the fact that AlterValue modified arrayArg) but the first

element of that array will have been incremented. Likewise, myStruct1 and myStruct2 will

continue to point to the same data (despite the fact that AlterValue modified structArg), and that

structure’s c member will have been incremented by one.

Now let’s look at an example where all the arguments are passed by reference:

myInt = 5

myArray1 = {4, 5, 6}

myArray2 = myArray1

struct Struct {a, b, c}

myStruct1 = Struct(1, 2, 3)

myStruct2 = myStruct1

call AlterRef(myInt, myArray1, myStruct1)

sub AlterRef(ByRef scalarArg, ByRef arrayArg, ByRef structArg)

 scalarArg = scalarArg + 1

 arrayArg[1] = arrayArg[1] + 1

 arrayArg = arrayArg * 2

 structArg.c = structArg.c + 1

 structArg = "Replaced by string"

endsub

When AlterRef returns, myInt will have been changed to 6. myArray2[1] will have been

incremented, but myArray1 will no longer point to the array; instead it will point to the array {8, 10,

12} (because AlterRef created a new array when it multiplied ArrayArg by 2). Likewise,

myStruct2.c will have been incremented, but myStruct1 will be set to the string “Replaced by

string”.

If a subroutine or function expects an array as one of its arguments, you can write an array

initializer in its place.

SUB PrintArray(array)

 FOR x = 1 TO UBOUND(array)

 13

 PRINT array[x]

 NEXT x

ENDSUB

CALL PrintArray({1, 2, 3})

2.17 Include Files
You might want to separate some of your code into separate file(s), for example if you’ve written

a set of subroutines that are used by multiple programs. BASIC supports C-like include files to

allow this.

You might, for example, have a game written in the file foo.bas. It could make use of subroutines

that are in the file bar.bai (“bai” meaning “BASIC include”). So in foo.bas, you would have a line of

code:

INCLUDE “bar.bai”

When BASIC is loading foo.bas and it encounters the INCLUDE statement, it will read in the

contents of bar.bai. It’s almost as if you copied and pasted the contents of bar.bai into foo.bas.

Include files can, themselves, have include statements in them. Bar.bai, for example, could

include baz.bai. Each file will be included only once. If, for example, foo.bas includes bar.bai and

baz.bai, but bar.bai also includes baz.bai, baz.bai will be included only once, and it will be

included at the first INCLUDE statement that BASIC encounters.

Including a file is almost like copying and pasting it in, but not entirely. Line numbers are not

affected by an INCLUDE statement. Errors that occur in foo.bas will show the foo.bas line

number. Errors that occur in an include file will show the file name and line number of the error.

It is possible to set breakpoints in an include file. For example,

BP “baz.bai” 123

Will set a breakpoint at line 123 in the baz.bai include file. Likewise, breakpoints can be cleared:

BP C “baz.bai” 123

A program can have no more than 8 include files (either directly or included by other include

files).

2.18 Variable Scope
A function or subroutine in your program has a local scope. A variable's scope is determined

when it is first assigned a value (i.e. when it is created): if the variable is first assigned a value

inside a function or subroutine, its scope is limited to the function or subroutine; if a variable is

first assigned a value in the main program, it has global scope.

If a variable name that exists in the global scope is used within a function or subroutine, the

global variable will be used. If you would like to ensure that a variable accessed within a function

or subroutine is a local variable, you can explicitly DIM it:

 14

foo = 1

CALL MySubroutine

SUB MySubroutine()

 DIM foo

 ' The following PRINT statement will cause an

 ' uninitialized variable error, since this foo is local

 PRINT foo

ENDSUB

2.19 Case Sensitivity
Only variable names are case-sensitive. All other program elements are case insensitive (e.g.

statements, logical operators like AND, OR and NOT, built-in function names, user function

names, predefined constants, and file names).

2.20 Error Handling
Normally, when an error occurs in a program, execution stops and an error message is printed.

However, you can avoid that by setting up your own error handling subroutine.

To set this up, write a subroutine to do the error handling and use the ON ERROR CALL

statement to tell GSBASIC to call your subroutine in the event of an error. Once in the subroutine,

you can call GetLastError() to retrieve information about what happened. For example:

‘ Create a global variable that will be set in the error handler

errorFlag = false

SUB MyErrorHandler

 errorFlag = true

 err = GetLastError()

 ‘ Print the error information

 PRINT “Error code = “, err[1]

 PRINT “Error message = “, err[2]

 PRINT “Line number = “, err[3]

 PRINT “Column number = “, err[4]

 PRINT “Source file = “, err[5]

CALL ClearLastError()

ENDSUB

ON ERROR CALL MyErrorHandler

a = MyErrorProneFunction()

ON ERROR CALL 0

IF errorFlag = true THEN

 ‘ Do something different

ENDIF

If an error occurs in MyErrorProneFunction, the MyErrorHandler subroutine will be called. When

MyErrorHandler returns, execution will resume at the line following the one where the error

occurred. Notice that since if the error occurs in MyErrorProneFunction(), execution of that line of

code will stop and the variable ‘a’ will not be assigned a value.

ON ERROR CALL can be used multiple times in a program to set up different error handlers for

different blocks of code. The error handler can be removed with the statement ON ERROR CALL

0. Error handler settings are scoped to the main program or the subroutine/function they are

 15

configured in. I.e. if you have an ON ERROR CALL in a subroutine, it only applies while the

program is executing that subroutine, or functions/subroutines called from that subroutine. When

the program returns from the subroutine, any error handler that was configured before is

automatically re-instated as the error handler.

The function GetLastError() returns a five-element array with the error code (an integer), the text

of the error message, the line number where the error occurred, the column number where it

occurred, and the file name (e.g. the main BASIC file or the include file). The ClearLastError()

routine resets the last error to zero.

3 USING GSBASIC
GSBASIC accepts statements entered at the command line. Typically, one statement is entered

per line, and the statement is executed when you hit Enter. There are two exceptions. First, if the

last non-space character on a line is an underscore (_), GSBASIC will prompt for the rest of the

statement to be entered. Second, if the statement begins a block (e.g. a WHILE statement that

must be followed by a block of code and an ENDWHILE, a FUNCTION statement that must be

followed by a block of code and an ENDFUNCTION) GSBASIC will prompt you to enter additional

statements until the block is terminated.

Lines are limited to 200 characters in length.

When GSBASIC is accepting commands, it can be in one of two modes: Immediate Mode or

Debug Mode. They are the same except that Debug Mode means that you have interrupted a

running BASIC program.

3.1 Immediate Mode
GSBASIC uses the prompt "Ready" followed by a newline to show that it's ready for you to enter

a statement. If you are continuing a single statement on a new line by using the underscore,

GSBASIC will prompt with "_>". If you are entering a block of code, GSBASIC will prompt you

with "&>".

GSBASIC offers a few line-editing features. Their correct functioning depends on the specific

console you are using. Under Microsoft Windows, GSBASIC uses the operating system's

console. If GSBASIC is embedded in another system, refer to that system's manual for

information on the console.

The backspace key works as you would expect, deleting the character at the end of the line.

GSBASIC retains a history of the last 10 unique lines you entered. Assuming the terminal

emulator supports arrow keys, you can move through the history list by pressing the Up and

Down Arrow keys; otherwise, you can use Ctrl+P and Ctrl+N. The history list is circular.

Ctrl+C causes GSBASIC to discard any statement(s) you're in the process of entering.

3.2 Running Programs
GSBASIC has access to a single directory on the host system. On Windows, it's the working

directory - typically the directory GSBASIC.exe was run from. When embedded in another

system, it's whatever that system provides to GSBASIC. Subdirectories are not currently

supported.

 16

If the directory has a file called autorun.bas, GSBASIC will load and run it at startup.

GSBASIC has the LOAD statement to load a BASIC program from the directory and a RUN

statement to run it. The LOAD statement takes a string as an argument, so the file name must be

enclosed in quotes. If the file is not found, GSBASIC adds a ".BAS" extension to it and tries

again. File names are case-insensitive.

' Tries to load the file Hello. If not found, tries Hello.bas

load "Hello"

run

GSBASIC does not allow you to edit or save programs, so your workflow will be to write the

program in an editor of your choice, save it into GSBASIC's working directory, then use

GSBASIC's console to load and run it.

3.3 Debugging
While a program is running, it can break into Debug Mode either by executing a BP (Breakpoint)

statement or in response to your hitting Ctrl+C. Debug Mode is very similar to Immediate Mode;

while in Debug Mode, you can execute statements, print or modify variables, and call subroutines

and functions in the program. To single-step through your program, enter the STEP statement

with an optional count of the number of statements to execute. To resume normal execution,

enter the RUN statement.

While in Debug mode, the console prompt is "Debug (depth = n)" instead of "Ready". The depth

count is important for keeping track of how deeply nested in Debug modes you are. For example,

consider this program with a subroutine that contains an infinite loop:

call loop()

sub loop

 i = 0

 repeat

 print i

 i = i + 1

 until 1 = 0

endsub

When run, this program will start printing out numbers. If you hit Ctrl+C, execution will break

somewhere inside the loop and you will be at Debug depth 1.

In Debug mode, you can call functions and subroutines in your program. So let's say you enter

"CALL LOOP". It will start printing out numbers again and you will need to break it by hitting

Ctrl+C. You will again enter Debug mode but you will be at depth 2. This is because you did not

exit Debug (depth = 1) mode; you called a subroutine from Debug mode and then had to break

out of it into a new Debug mode.

Normally, you would exit Debug mode by entering RUN. In this perverse example, RUN will just

put you into the infinite loop again, and you can only break out of it by hitting Ctrl+C again. The

only way out is to STOP the program. In a more typical scenario, where you call a well-behaved

function from Debug mode, and the function returns in a reasonable amount of time, you will stay

 17

in Debug (depth = 1) mode and will be able to resume running your program with the RUN

command.

3.4 Breakpoints
Breakpoints cause your program to pause execution and enter Debug mode. Breakpoints can be

hard-coded into your program or set at the command line.

To hard-code a breakpoint into your program, place the BP statement in your program. When the

program executes that line, GSBASIC will print the line number of the BP statement, then enter

Debug mode. You may have any number of BP statements in the program.

Alternatively, you can set, clear, and display soft breakpoints from Immediate or Debug mode.

For details, see the section labeled BP (Breakpoint) Statement

3.5 Tracing
In Immediate or Debug Mode, you can give the commands TRON (Trace On) or TROFF (Trace

Off). They can even be embedded in your program. When tracing is on, the line number, in

brackets, of each statement will be printed before the statement is executed. GSBASIC does not

have line numbers like old versions of BASIC do, so the line number that is printed is the actual

position of the statement in the program file.

3.6 Autorun.bas
When GSBASIC starts up, it looks for a file named autorun.bas in its working directory. If it finds

it, GSBASIC loads and runs the autorun.bas program. If autorun.bas exits, GSBASIC enters

immediate mode.

4 STATEMENTS

4.1 BP (Breakpoint)

Description

Breaks execution of the program and enters Debug mode

Example

BP ' In a program, breaks to the debugger.

BP ' At the command line, prints the "soft" breakpoints.

BP 15 ' Sets a soft breakpoint at line 15

BP CLEAR ' Removes all soft breakpoints

BP CLEAR 15 ' Removes the soft breakpoint at line 15

BP C ' Same as BP CLEAR

BP C 15 ' Same as BP CLEAR 15

BP “baz.bai” 123 ‘ Sets a breakpoint at line 123 in

 ‘ the include file baz.bai

BP C “baz.bai” 123 ‘Clears the breakpoint in the include file

More Information

This statement can be used at the command line or in a program. When hard-coded into a

program, it takes no arguments, and when executed, causes GSBASIC to enter Debug mode.

 18

When used at the command line, in Immediate or Debug mode, it sets, removes, or displays a list

of "soft" breakpoints (as opposed to hard-coded breakpoints). Before executing a line of code,

GSBASIC will check whether a soft breakpoint has been set there. If it has, GSBASIC will enter

Debug mode before the line of code is executed.

Once in Debug mode, GSBASIC will allow you to examine and modify the program's state. Use

the RUN statement to leave Debug mode and continue executing the program.

See Also

RUN, Debugging, Breakpoints

4.2 CALL

Description

Calls a subroutine or function.

Example

CALL FOO

CALL BAR(1, a, SIN(3.14159))

More Information

Subroutines may have any number of parameters. If a subroutine takes no arguments, it is not

necessary to have parentheses. (This is not true of function calls in expressions: they must have

parentheses even when they have no arguments.)

A function may be called with the CALL statement. The function's return value will be discarded.

See Also

SUB...ENDSUB, FUNCTION...ENDFUNCTION,

Functions, Variable Scope

4.3 CHAIN

Description

Ends the currently running program, loads and runs another.

Example

CHAIN "lunar.bas"

CHAIN "lunar" RERUN

More Information

The CHAIN statement is the equivalent of a STOP, LOAD, and RUN. The RERUN keyword is

optional. In the second example above, the current program chains to lunar.bas and specified

RERUN. When lunar.bas exits the calling program will be loaded and run from the beginning.

(Some other BASICs have CHAIN ... RETURN which resumes execution at the statement after

the CHAIN. GSBASIC does not support that.)

4.4 CONTINUE {FOR | REPEAT | WHILE}

Description

Passes control to the next iteration of the nearest enclosing loop of the specified type.

 19

Example

a = 0

b = 10

WHILE a < b

 a = a + 1

 PRINT "This text will be printed 10 times"

 CONTINUE WHILE

 PRINT "This text will not be printed"

ENDWHILE

FOR x = 1 TO 10

 PRINT "This text will be printed 10 times"

 REPEAT

 CONTINUE FOR ' Exits REPEAT loop and CONTINUEs FOR

 PRINT "This text will not be printed"

 UNTIL a < b

 PRINT "This text will also not be printed"

NEXT x

FOR x = 1 TO 10

 PRINT "This text will be printed 10 times"

 FOR y = 1 TO 10

 PRINT "This text will be printed 100 (10*10) times"

 CONTINUE FOR

 PRINT "This text will not be printed"

 NEXT y

 PRINT "This text will be printed 10 times"

NEXT x

More Information

The CONTINUE statement must specify a FOR, REPEAT, or WHILE loop type. It skips the

remainder of the code in the specified loop type and continues with the next iteration of that loop.

As shown in the examples, this allows the CONTINUE statement to exit out of inner loops on its

way to continuing an outer loop.

See Also

EXIT {FOR | REPEAT | WHILE}

4.5 DIM

Description

Create or re-create an array. Alternatively, create a local variable.

Example

DIM a[10]

' Destroy the previous 'a' array and create a new one

DIM a[2,3]

b = 1 ' Create a global variable

c = 2 ' Create another local variable

CALL MySubroutine

 20

SUB MySubroutine

 DIM b ' Create a local variable

 b = 3 ' Initialize the local variable

 PRINT c ' print the global variable

ENDSUB

DIM d[b + c], e[3, 4, b] ' Dimensions can be expressions

More Information

DIM typically allocates an array. If an array of that name already exists within the same scope,

that array is destroyed and a new one is created. Data in the old array is not preserved.

When crating a multi-dimensional array, the numbers of elements in each dimension are

separated by commas.

DIM creates variables in the current scope, so when used inside a subroutine or function, DIM

creates local variables, both arrays and scalars.

The DIM statement is executable, unlike an array declaration in C. Since it is executed, the

dimensions specified for the array can be expressions, as shown in the example above.

See Also

Arrays, Variables, Variable Scope

4.6 DIR

Description

Prints out a list of files in the working directory.

Example

DIR

See Also

Running Programs, Dir Function

4.7 EXIT {FOR | REPEAT | WHILE}

Description

Terminate execution of the nearest enclosing loop of the specified type.

Example

WHILE a < b

 PRINT "This text will be printed once"

 EXIT WHILE

 PRINT "This text will not be printed"

ENDWHILE

FOR x = 1 TO 10

 PRINT "This text will be printed once"

 REPEAT

 PRINT "This text will be printed once"

 21

 EXIT FOR

 PRINT "This text will not be printed"

 UNTIL a < b

 PRINT "This text will also not be printed"

NEXT x

FOR x = 1 TO 10

 PRINT "This text will be printed 10 times"

 FOR y = 1 TO 10

 PRINT "This text will be printed 10 times"

 EXIT FOR

 PRINT "This text will not be printed"

 NEXT y

 PRINT "This text will be printed 10 times"

NEXT x

More Information

The EXIT statement specifies a FOR, REPEAT, or WHILE loop type. It skips the remainder of the

code in the specified loop type and exits the loop. As shown in the examples, this allows the EXIT

statement to exit out of inner loops on its way to exiting an outer loop.

See Also

CONTINUE {FOR | REPEAT | WHILE}

4.8 FOR...NEXT

Description

Repeats a group of statements while a variable counts from a start value to an end value.

Example

last = 100

FOR x = 1 TO last

 PRINT "This will be printed 100 times"

NEXT x

FOR y = last TO last + 10

 PRINT "This will be printed 10 times"

NEXT

FOR z = 10 TO 1 STEP -2.5

 PRINT "This will be printed 4 times"

NEXT z

More Information

The start, end, and optional step values of the loop must be numbers. They are calculated only

once, when the loop is entered (i.e. if the end or step value is an expression, the expression is

evaluated only once). If no step is specified, the loop variable is incremented by 1 on each

iteration.

When a FOR ... NEXT loop starts, BASIC evaluates the start, end, and step values. BASIC

evaluates these values only at this time and then assigns start to the counter variable. Before the

 22

statement block runs, BASIC compares the counter to end. If counter is already larger than the

end value (or smaller if the step is negative), the FOR loop ends and control passes to the

statement that follows the NEXT statement. Otherwise, the statement block runs.

Each time BASIC encounters the NEXT statement, it increments the counter by the step and

returns to the FOR statement. Again it compares counter to end, and again it either runs the block

or exits the loop, depending on the result. This process continues until the counter passes end or

an EXIT FOR statement is encountered.

The loop doesn't stop until the counter has passed end. If the counter is equal to end, the loop

continues. The comparison that determines whether to run the block is counter <= end if step is

positive and counter >= end if step is negative.

Changing the value of start, end, or step doesn't affect the iteration values that were determined

when the loop was first entered. The NEXT statement does not need to specify the loop variable.

See Also

CONTINUE {FOR | REPEAT | WHILE}, EXIT {FOR | REPEAT | WHILE}

4.9 FUNCTION...ENDFUNCTION

Description

Defines a user-defined function.

Example

FUNCTION MyFunction(a, b)

 RETURN a + b

ENDFUNCTION

FUNCTION PI()

 RETURN 3.14159

ENDFUNCTION

PRINT MyFunction(1, 2) + PI()

More Information

A function definition must have a parameter list, even if it is empty (as in the example of Pi(),

above). A function must return a value. A function is typically called from an expression. It may

also be called from a CALL statement, but if it is, the return value is discarded.

Function names are case-insensitive.

Variables used within a function are global unless they are explicitly created in a DIM statement.

Functions may call other subroutines and functions, and may be recursive.

See Also

SUB...ENDSUB,

Functions, Variable Scope

 23

4.10 IF...[THEN]...[ELSEIF...[THEN]...][ELSE...]ENDIF

Description

Conditional execution.

Example

IF a = b AND c <> d THEN

 PRINT "Hello "

ELSEIF e = f THEN

 PRINT "Goodbye "

ELSE

 PRINT "world"

ENDIF

More Information

The THEN keywords on the IF and ELSEIF lines are optional. There may be any number of

ELSEIFs.

Unlike other versions of BASIC, there is no single-line IF...THEN statement, e.g. you cannot write

IF a = b THEN PRINT "Hi" ' This will cause an error

4.11 INCLUDE

Description

Includes a source file in the program, similar to C’s #include.

Example

INCLUDE “bar.bai”

More Information

The INCLUDE statement allows you to incorporate the code in another file into the current

program. Details can be found in section 2.17.

See Also

Include Files

4.12 LET

Description

Assign a value to a variable.

Example

LET a = 1

b = 2 + a

c = {{a, b}, {4, 5}} ' Using an array initializer

More Information

The LET keyword is optional.

 24

4.13 LOAD

Description

Loads and compiles a program from the working directory into memory.

Example

LOAD hello.bas

LOAD hello

LOAD "01_hello" ' Quotes are required for file names that don't

begin with a letter

More Information

File names are case-insensitive. LOAD looks for the file you specified and, if it does not find it,

appends ".bas" to the string and looks again.

If the file is found, it is loaded, compiled to an intermediate form and prepared for execution. If

there are compilation errors, the LOAD will fail.

See Also

RELOAD, Running Programs

4.14 MEM

Description

Prints the amount of memory being used by the program, as well as the free space available.

4.15 ON ERROR CALL

Description

Sets up or removes an error handler.

Example

SUB MyErrorHandler

 errorFlag = true

 err = GetLastError()

 ‘ Print the error information

 PRINT “Error code = “, err[1]

 PRINT “Error message = “, err[2]

 PRINT “Line number = “, err[3]

 PRINT “Column number = “, err[4]

CALL ClearLastError()

ENDSUB

ON ERROR CALL MyErrorHandler

a = MyErrorProneFunction()

ON ERROR CALL 0

IF errorFlag = true THEN

 ‘ Do something different

ENDIF

 25

More Information

Normally, when an error occurs in a program, execution stops and an error message is printed.

However, you can avoid that by setting up your own error handling subroutine. You can also

remove your error handling with ON ERROR CALL 0.

See Also

Error Handling

4.16 OPTION BASE

Description

Changes the array index base.

Example

OPTION BASE 0

OPTION BASE 1

More Information

By default, arrays a one-based (the index of their first element is 1). However, you might prefer to

have your arrays zero-based (the index of their first element is 0). To do this, put OPTION BASE

0 anywhere in your program. When your program is loaded – even before it is run – the base for

arrays will be set to zero.

Alternatively, you can also have OPTION BASE 1 in your program. This sets the array base to 1,

which is done by default anyway. So OPTION BASE 1 is really just for documentation purposes.

OPTION BASE may appear only once in your program.

The Option Base will affect the behavior of the UBound function, but not the Size function.

See Also

Size, UBound

4.17 PRINT

Description

Outputs text to the console.

Example

PRINT "The variable 'a' equals ", a

More Information

The PRINT statement evaluates a comma-separated list of expressions and outputs them as text

to the console, followed by a new line (carriage return and line feed). No spaces or tabs are

inserted between expressions.

4.18 RELOAD

Description

Reloads the current program from the working directory.

 26

Example

RELOAD

More Information

Reloads the program that was previously loaded. This is a convenient command to use when you

are editing a program in a separate window, saving it, and testing the changes.

See Also

LOAD

4.19 REPEAT...UNTIL

Description

Executes a block of statements until a condition is true.

Example

REPEAT

 a = a + 1

UNTIL a = 100

More Information

The statements inside the REPEAT...UNTIL block will be executed at least once.

See Also

WHILE...[DO]...ENDWHILE, CONTINUE {FOR | REPEAT | WHILE}, EXIT {FOR | REPEAT |

WHILE}

4.20 RETURN

Description

Returns from a user-defined function or subroutine.

Example

RETURN a + b ' Return from a function

RETURN ' Return from a subroutine

More Information

The RETURN statement may appear anywhere in a function or subroutine, and may even appear

multiple times. The RETURN statement must appear in a function, along with an expression that

will be the returned value.

The RETURN statement is optional in a subroutine - the subroutine will automatically return when

execution reaches the ENDSUB statement - but if it appears in a subroutine, it must not specify a

return value.

See Also

SUB...ENDSUB,

 27

Functions

4.21 RUN

Description

Executes the program in memory.

Example

LOAD "Hello.bas"

RUN

More Information

This statement is allowed only in Immediate mode. The program must have been loaded with the

LOAD or RELOAD statement. All variables are destroyed before beginning execution.

See Also

LOAD, Immediate Mode, Running Programs

4.22 STEP

Description

Execute the specified number of statements.

Example

STEP ' Executes one statement

STEP 10 ' Executes 10 statements

More Information

The STEP statement may be used in Immediate mode, after a program has been loaded, or in

Debug mode. It executes the specified number of statements, then breaks into Debug mode. If no

number of statements is specified, one statement will be executed. If a number is specified, it

must be an integer literal.

See Also

Debugging

4.23 STOP

Description

Terminates the program.

Example

STOP

 28

More Information

This statement can be used within or program or in Debug mode. It terminates the program and

returns to Immediate mode.

4.24 STRUCT

Description

Defines a C-like struct

Example

STRUCT Person {Name, Address, Age}

STRUCT Address {Street, City }

fred = Person(“Fred Flintstone”, _

 Address(“345 Cave Stone Road”, “Bedrock”), 35)

print fred.Address.Street

More Information

The STRUCT statement defines the name and member variables for a structure. Variables can

then be created with that structure type and used much a C structs are.

See Also

Structs

4.25 SUB...ENDSUB

Description

Defines a user-defined subroutine.

Example

SUB TowersOfHanoi(disks, source, destination, temp)

 IF disks = 1 THEN

 PRINT "Move disk from tower ", source, _

 " to tower ", destination

 ELSE

 CALL Hanoi(disks - 1, source, temp, destination)

 CALL Hanoi(1, source, destination, temp)

 CALL Hanoi(disks - 1, temp, destination, source)

 ENDIF

ENDSUB

More Information

A subroutine definition may have a parameter list, but does not require one. A subroutine is

invoked from a CALL statement. Subroutine names are case-insensitive.

Variables used within a subroutine are global unless they are explicitly created in a DIM

statement. Subroutines may call other subroutines and functions, and may be recursive.

 29

See Also

RETURN, FUNCTION...ENDFUNCTION,

Functions, Variable Scope

4.26 TRON and TROFF

Description

Turns program tracing on and off.

Example

TRON

RUN

[1][2][3][4][5][6] ...

TROFF

More Information

Tracing may be turned on in immediate mode, debug mode, or even from a line in a program.

When tracing is on, the current line number will be printed before each line of the program is

executed.

See Also

STEP, Tracing, Debugging

4.27 WHILE...[DO]...ENDWHILE

Description

Executes a block of statements while a condition is true.

Example

WHILE a < 100

 a = a + 1

ENDWHILE

WHILE true DO ' An infinite loop

ENDWHILE

More Information

The statements inside the WHILE...ENDWHILE will be executed as long as the condition is true.

The DO keyword is optional.

See Also

REPEAT...UNTIL, CONTINUE {FOR | REPEAT | WHILE}, EXIT {FOR | REPEAT | WHILE}

5 BUILT-IN CONSTANTS
These are the constants built in to GSBASIC. There may be additional built-in constants provided

by the system that GSBASIC is embedded in; see that system's documentation for a list.

Built-in constant names are case-insensitive.

 30

5.1 False

Description

The integer 0.

Example

REPEAT

UNTIL false ' An infinite loop

5.2 Nil

Description

An uninitialized value.

Example

DIM a[10]

a[1] = 1

a[1] = nil

PRINT a[1] ' Causes an error, "Variable is used before being

 ' assigned a value"

IF IsNil a[1] THEN

 a[1] = 3

ENDIF

More Information

Nil can be used to uninitialize a value that was previously initialized.

5.3 Pi

Description

The ratio of a circle's circumference to its diameter; 3.14159.

5.4 True

Description

The integer 1.

Example

WHILE true ' An infinite loop

ENDWHILE

6 BUILT-IN FUNCTIONS
These are the functions built in to GSBASIC. There may be additional built-in functions provided

by the system that GSBASIC is embedded in; see that system's documentation for a list.

Built-in function names are case-insensitive.

 31

6.1 Abs

Description

Returns the absolute value of a number.

Example

PRINT Abs(-4.5) ' Prints 4.5

More Information

The argument must be an integer or a float. The return type is the same as the argument type.

6.2 Acos

Description

Returns the arccosine of a number in radians.

Example

PRINT ACos(-1) ' Prints 3.14159

See Also

Asin, Atan, Sin, Tan

6.3 AppendArrays

Description

Returns an array that has the values of two arrays appended to each other.

Example

a = {1, 2, 3}

b = {4, 5}

c = AppendArrays(a, b) ' c will be {1, 2, 3, 4, 5}

d = {{1, 2}}

e = {{3, 4}}

f = AppendArrays(d, e) ' f will be {{1, 2},{3, 4}}

More Information

AppendArrays creates a new array, copies the values of the first array argument into it then

copies the values of the second array into it. The two array arguments must have the same

number of columns but may have different numbers of rows. For example:

DIM a[5], b[2], c[2, 5], d[3, 5], e[5, 6], f[2, 3, 4], g[5, 3, 4]

x = AppendArrays(a, b) ' Valid

x = AppendArrays(c, d) ' Valid

x = AppendArrays(f, g) ' Valid

x = AppendArrays(d, e) ' Illegal

x = AppendArrays(a, c) ' Illegal

It's sometimes useful to build an array completely with calls to AppendArray, e.g. you start with an

empty array and append a row at time to it. This can be done by dimensioning the array with a

zero rows. For example:

 32

' Start with a 2D array with zero rows

DIM arrayToBuild[0, 2]

' Create newRow as a 2D array of dimension [1, 2]

newRow = {{"hello", "world"}}

' Build up the array by appending a row

arrayToBuild = AppendArrays(arrayToBuild, newRow)

When values are copied to the new array, it is a "shallow copy", i.e. if a value is an array, the

copied value will point to the same underlying array.

See Also

CopyArray, Arrays

6.4 Asc
Returns the ASCII value of the first character in a string.

Example

PRINT Asc("ABC") ' prints 65

See Also

Chr

6.5 Asin

Description

Returns the arcsine of a number in radians.

Example

PRINT Asin(0) ' Prints 1.5708, which is PI / 2

See Also

Acos, Atan, Sin

6.6 Atan

Description

Returns the arctangent of a number in radians.

Example

PRINT Atan(1) ' Prints 0.7854, which is PI / 4

See Also

Acos, Asin, Atan2

 33

6.7 Atan2

Description

Returns the arctangent of y / x in radians, taking into account the sign of both arguments in order

to determine the quadrant.

Example

PRINT Atan2(1, 1) ' Prints 0.785398, which is 45 degrees

PRINT Atan2(1, -1) ' Prints 2.35619, which is 135 degrees

PRINT Atan2(-1, -1) ' Prints -2.35619, which is -135 degrees

PRINT Atan2(-1, 1) ' Prints -0.785398, which is -45 degrees

More Information

Atan2 returns values between + (inclusive) and – .

See Also

Acos, Asin, Atan

6.8 ByteArray

Description

Creates a string initialized with nul bytes.

Example

‘ Create a string initialized to 100 nul bytes

data = ByteArray(100)

More Information

Individual bytes in a string can be accessed as if the string is an array, e.g:

data = “hello”

PRINT data[1] ‘ Prints 104, the ASCII code for h

data[1] = 72 ‘ Sets the first character to capital H

Aside from the convenience of accessing individual characters this way, it allows binary data to

be stored as byte arrays, thus saving a lot of memory compared to regular arrays. The

ByteArray() function lets you allocate a zero-initialized string of any length that you can then use

as an array.

6.9 Chr

Description

Returns the character associated with the specified character code.

Example

PRINT Chr(33) ' Prints an exclamation mark (ASCII code 33)

More Information

The argument must be an integer between 0 and 255.

 34

See Also

Asc

6.10 ClearLastError

Description

Sets the last error to {0, “”, 0, 0}

Example

CALL ClearLastError()

‘ GetLastError now returns {0, “”, 0, 0}

err = GetLastError()

See Also

GetLastError, Error Handling

6.11 CopyArray

Description

Returns an array that has a copy of the values of the input array.

Example

a = {1, 2, 3}

b = CopyArray(a) ' b will be {1, 2, 3}

More Information

CopyArray creates a new array and copies the values of the input array argument into it. This is

different from assigning one array to another, because an assignment creates two references to

the same underlying array. For example:

a = {1, 2, 3}

copy = CopyArray(a) ' Copies the values of a into copy

ref = a ' ref is now referring to the same array data as a

a[1] = 5

PRINT copy[1]' Prints 1

PRINT ref[1] ' Prints 5, since a has the same array data as ref

When values are copied to the new array, it is a "shallow copy", i.e. if a value is an array or a

struct, the copied value will point to the same underlying array or struct. It’s possible to recursively

copy the data, instead of copying references, with the DeepCopy function.

See Also

Arrays, DeepCopy

6.12 Cos

Description

Returns the cosine of an angle, which is given in radians.

 35

Example

PRINT Cos(3.14159) ' Prints -1

See Also

Acos, Asin, Atan, Sin

6.13 Cross

Description

Calculate the cross product of two vectors.

cp = Cross({2, 3, 4}, {5, 6, 7})

More Information

The arguments must be one-dimensional arrays with three elements each, i.e. vectors in three

dimensions. The result is a vector perpendicular to the two arguments.

See Also

Vector and Matrix Arithmetic

6.14 DeepCopy

Description

Returns variable that is a deep copy of the input value.

Example

Struct myStruct {member1, member2, member3}

a = {1, 2, myStruct(3, 4, 5)}

b = DeepCopy(a) ' b will be {1, 2, {3, 4, 5}}

‘ This will change b[3].member2 but not a[3].member2

b[3].member2 = 100

‘ This just has c and a refer to the same data.

c = a

‘ This modifies c[3].member2, which will also change

‘ a[3].member2

c[3].member2 = 200

More Information

DeepCopy recursively copies the values of the input argument (typically a struct or array). This is

different from assigning one array or struct to another, because an assignment creates two

references to the same underlying array. It is different from CopyArray because (1) it can also

copy structs and (2) if some of the elements of the array are structs or (nested) arrays, CopyArray

only copies references to them whereas DeepCopy creates new structs or arrays and copies the

data.

See Also

Arrays, CopyArray

 36

6.15 Dir

Description

Returns the an array containing the names of all the files in the current directory.

Example

PRINT Dir() ' Prints an array of file names

More Information

The file names are sorted into alphabetic order.

See Also

DIR Statement

6.16 Float

Description

Converts an integer to a float.

Example

a = 5

a = Float(a) ' Converts a to a float (5.0)

See Also

Int

6.17 GetLastError

Description

Returns an array with information about the last error that occurred.

Example

err = GetLastError()

‘ Print the error information

PRINT “Error code = “, err[1]

PRINT “Error message = “, err[2]

PRINT “Line number = “, err[3]

PRINT “Column number = “, err[4]

More Information

Normally, an error during program execution stops the program and prints out the error, so

there’s little reason to call GetLastError(). But if you’re using ON ERROR CALL to set up an error

handler, calling GetLastError becomes very useful.

It returns an array with five elements: the error code (an integer), the error text (a string), the line

number where the error occurred (and integer), the column number where the error occurred

(also an integer), and the file name (e.g. the main BASIC file or the include file).

See Also

ClearLastError, Error Handling

 37

6.18 Instr

Description

Finds the first occurrence of one string within another.

Example

str = "ABCDEABCDE"

print Instr(str, "C") ' Prints 3

print Instr(str, "X") ' Prints 0

print Instr(4, str, "C") ' Prints 8

More Information

Instr takes two or three arguments. If it is given two arguments, they must both be strings. Instr

returns the 1-based position of the second string in the first string. If the second string is not

found, Instr returns 0.

If Instr has three arguments, then the first is the 1-based position in the string at which to start the

search.

This table summarizes the return values, assuming the call pos = Instr(start, string1, string2):

If Instr returns

string1 is empty 0

string2 is empty start

string2 is not found 0

string2 is found within string1 Position in string1 where match begins

start > length of string1 0

6.19 Int

Description

Convert a floating point number to an integer.

Example

a = 5.0

PRINT a / 2 ' Prints 2.5

a = Int(a) ' Converts a to an integer

PRINT a / 2 ' Prints 2, because of integer arithmetic

More Information

The float is rounded towards zero and then its internal representation is converted to an integer.

See Also

Float

 38

6.20 LBound

Description

Returns the smallest index of an array for a given dimension.

Example

OPTION BASE 1

DIM a[5, 7]

PRINT LBound(a) ' Prints 1

PRINT LBound(a, 1) ' Prints 1

PRINT LBound(a, 2) ' Prints 1

PRINT LBound(a, 3) ' Prints 0; there is no 3rd dimension

OPTION BASE 0

DIM a[5, 7]

PRINT LBound(a) ' Prints 0

PRINT LBound(a, 1) ' Prints 0

PRINT LBound(a, 2) ' Prints 0

PRINT LBound(a, 3) ' Prints 0; there is no 3rd dimension

More Information

LBound accepts one or two arguments. The first argument is an array. If there is no second

argument, LBound returns the smallest index for the first dimension of the array. If there is a

second argument, it specifies which dimension of the array to return the smallest index of.

The second argument is always 1-based, even if OPTION BASE has been set to 0.

Note that the smallest index is just the value of OPTION BASE. If the Option Base is 1, LBound

will return 1 (for valid array and dimension arguments). If the Option Base is 0, LBound will

always return 0.

See Also

UBound, OPTION BASE

6.21 Left

Description

Returns the leftmost n characters of a string.

Example

PRINT Left("Hello", 3) ' Prints Hel

PRINT Left("Hello", 6) ' Prints Hello

See Also

Len, Mid, Right

 39

6.22 Len

Description

Returns the length of a string.

Example

PRINT Len("Hello") ' Prints 5

See Also

Left, Mid, Right

6.23 Max

Description

Returns the larger of two values.

Example

PRINT Max(5, 8.2) ' Prints 8.2

PRINT Max("Hello", "Goodbye") ' Prints Hello

See Also

Min

6.24 Mid

Description

Returns characters from the middle of a string.

Example

PRINT Mid("Hello", 1, 3) ' Prints Hel

PRINT Mid("Hello", 2, 3) ' Prints ell

PRINT Mid("Hello", 2) ' Prints ello

More Information

Mid can take two or three arguments. The first argument is the string. The second argument is

the position in the string at which to start getting characters (the first character is position 1). The

optional third argument is the number of characters to get. If the third argument is omitted, all

characters from the starting position to the end of the string are returned.

See Also

Left, Len, Right

6.25 Min

Description

Returns the smaller of two values.

 40

Example

PRINT Min(5, 8.2) ' Prints 5

PRINT Min("Hello", "Goodbye") ' Prints Goodbye

See Also

Max

6.26 Norm

Description

Returns the Euclidean norm of an array.

Example

v = {3, 4}

n = norm(v) ‘ n is set to sqrt(3 * 3 + 4 * 4), or 5

More Information

The Norm() function calculates the Euclidean norm of a matrix or the magnitude of a vector. Like

the Pythagorean theorem, it adds the squares of all the elements in the matrix and returns the

square root.

See Also

Vector and Matrix Arithmetic

6.27 Rand

Description

Returns a pseudo-random integer.

Example

PRINT Rand() MOD 10 ' Prints an integer between 0 and 9

More Information

The integer returned by Rand is between 0 and the maximum positive value an integer can hold.

That maximum is platform-dependent, but will always be at least 32,767. The best way to get a

random number in a given range is to take the modulo of the value returned by Rand().

Every time a program runs, the sequence of numbers returned by Rand() will be the same, i.e.

they're pseudo-random, but reproducible. Usually, you will want the sequence to be different

every time. In that case, call the Randomize() function once at the beginning of your program.

See Also

Randomize

6.28 Randomize

Description

Initializes the pseudo-random number generator.

Example

CALL Randomize

 41

CALL Randomize(45)

More Information

Seeds the pseudo-random number generator (RNG). If no argument is given, the RNG is seeded

with an unpredictable value and subsequent calls to Rand() will return unpredictable values. If an

integer argument is given, the RNG will be seeded with that value. Two different initializations

with the same seed will generate the same succession of results in subsequent calls to Rand.

See Also

Rand

6.29 Pow

Description

Calculates x
y
.

Example

PRINT POW(2, 3) ‘ Prints 8

PRINT POW(2, 0.5) ‘ Prints 1.41421

More Information

Before version 1.21, the ^ operator calculated the exponent. ^ is now being used for bitwise XOR,

so exponentiation is done with the POW() function

6.30 Right

Description

Returns the rightmost n characters of a string.

Example

PRINT Right("Hello", 3) ' Prints llo

PRINT Right("Hello", 6) ' Prints Hello

See Also

Left, Len, Mid

6.31 Round

Description

Rounds a number to the nearest integer.

Example

PRINT Round(5.6) ' Prints 6

PRINT Round(-3.5) ' Prints -4

More Information

The internal representation of the returned value is a float. Round() is different from Int() in two

ways: first, it rounds the number whereas Int() discards the fractional part; second, it returns a

float whereas Int() returns an integer.

 42

See Also

Truncate

6.32 Sin

Description

Returns the sine of an angle, which is given in radians.

Example

PRINT Sin(3.14159 / 2) ' Prints 1

See Also

Acos, Asin, Atan, Cos, Tan

6.33 Size

Description

Returns the number of elements in an array for a given dimension.

Example

DIM a[5, 7]

PRINT Size(a) ' Prints 5

PRINT Size(a, 1) ' Prints 5

PRINT Size(a, 2) ' Prints 7

PRINT Size(a, 3) ' Prints 0; there is no 3rd dimension

b = 3

PRINT Size(b) ' Prints 0, since b is not an array

More Information

Size accepts one or two arguments. The first argument is an array. If there is no second

argument, Size returns the number of elements for the first dimension of the array. If there is a

second argument, it specifies which dimension of the array to return the number of elements of.

See Also

UBound

6.34 Sqrt

Description

Returns the square root of a number.

Example

PRINT Sqrt(5) ' Prints 2.23606

PRINT Sqrt(-3.5) ' Prints nan (Not a Number)

More Information

Returns a float.

6.35 StrComp

Description

Returns -1, 0, or 1, based on the result of a string comparison.

 43

Example

PRINT StrComp("HELLO", "HELLo") ' Prints -1

PRINT StrComp("HELLO", "HELLo", 0) ' Prints -1

PRINT StrComp("HELLO", "HELLo", 1) ' Prints 0

More Information

The third argument is optional and indicates whether the string comparison is case insensitive. If

there is no third argument, or if the third argument is 0, the comparison is case-sensitive. If the

third argument is non-zero, the comparison is case-insensitive.

The return value is zero if the strings are equal, -1 if the first string is less than the second, and 1

if the first string is greater than the second.

6.36 Tan

Description

Returns the tangent of an angle, which is given in radians.

Example

PRINT Tan(3.14159 / 4) ' Prints 1

See Also

Acos, Asin, Atan, Cos, Sin

6.37 ToLower

Description

Returns a copy of a string converted to lower case.

Example

PRINT ToLower("HELLO") ' Prints hello

More Information

Returns a string that is a copy of the argument, except that letters are converted to lower case.

The argument is unchanged.

See Also

ToUpper

6.38 ToUpper

Description

Returns a copy of a string converted to upper case.

Example

PRINT ToLower("hello") ' Prints HELLO

More Information

Returns a string that is a copy of the argument, except that letters are converted to upper case.

The argument is unchanged.

 44

See Also

ToLower

6.39 Transpose

Description

Swaps the rows and columns of an array.

Example

a = Transpose({{1, 2, 3}, {4, 5, 6}})

‘ a is now {{1,4},{2,5},{3,6}}

b = Transpose({1, 2, 3})

‘ b is now {{1}, {2}, {3}}

c = Transpose(b)

‘ c is now {1, 2, 3}

See Also

Vector and Matrix Arithmetic

6.40 Truncate

Description

Rounds a number towards zero.

Example

PRINT Truncate(5.6) ' Prints 5

PRINT Truncate(-3.5) ' Prints -3

More Information

Removes the fractional portion of a number. Returns a float. Truncate() is different from Int() in

that it returns a float whereas Int() returns an integer.

See Also

Round

6.41 UBound

Description

Returns the largest index of an array for a given dimension.

Example

OPTION BASE 1

DIM a[5, 7]

PRINT UBound(a) ' Prints 5

PRINT UBound(a, 1) ' Prints 5

PRINT UBound(a, 2) ' Prints 7

PRINT UBound(a, 3) ' Prints 0; there is no 3rd dimension

b = 3

PRINT UBound(b) ' Prints 0, since b is not an array

 45

OPTION BASE 0

DIM a[5, 7]

PRINT UBound(a) ' Prints 4

PRINT UBound(a, 1) ' Prints 4

PRINT UBound(a, 2) ' Prints 6

PRINT UBound(a, 3) ' Prints -1; there is no 3rd dimension

b = 3

PRINT UBound(b) ' Prints -1, since b is not an array

More Information

UBound accepts one or two arguments. The first argument is an array. If there is no second

argument, UBound returns the largest index for the first dimension of the array. If there is a

second argument, it specifies which dimension of the array to return the largest index of.

The second argument is always 1-based, even if OPTION BASE has been set to 0.

Note that the largest index is dependent on the OPTION BASE. If an array has 3 elements and

the Option Base is 1, UBound will return 3. If the Option Base is 0, UBound will return 2. In the

last two examples, when UBound returns 0: if the Option Base were 0, UBound would return -1. If

you have set the Option Base to 0, you might find the Size function to be more useful than

UBound.

See Also

LBound, Size, OPTION BASE

6.42 Val

Description

Converts a string to a number.

Example

a = Val("123.456")

More Information

Val ignores leading whitespace in the string. When it gets to the first digit or sign (+ or -) it begins

converting the string to a floating point number and continues until it reaches the first character

that cannot be parsed as part of a number. Val supports exponents (e.g. “1e-3”). If no valid

number was found, Val returns 0.

